
Real-Time Workshop®

Embedded Coder
For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

Reference
Version 4

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder Reference

© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 4.5 (Release 2006b)

Contents

Functions — By Category

1
Model Entry Points . 1-2

System Target File Callback Interface 1-3

Functions — Alphabetical List

2

Blocks — By Category

3
Configuration Wizards . 3-2

Module Packaging . 3-3

Blocks — Alphabetical List

4

Index

iii

iv Contents

1

Functions — By Category

Model Entry Points (p. 1-2) Access entry points in generated
code for Simulink® model

System Target File Callback
Interface (p. 1-3)

Control Real-Time Workshop®

configuration options in callbacks for
ERT-based custom targets

1 Functions — By Category

Model Entry Points
model_initialize Initialization entry point in

generated code for Simulink model

model_SetEventsForThisBaseStep Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model

model_step Step routine entry point in generated
code for Simulink model

model_terminate Termination entry point in generated
code for Simulink model

1-2

System Target File Callback Interface

System Target File Callback Interface
slConfigUIGetVal Return current value for custom

target configuration option

slConfigUISetEnabled Enable or disable custom target
configuration option

slConfigUISetVal Set value for custom target
configuration option

1-3

1 Functions — By Category

1-4

2

Functions — Alphabetical
List

model_initialize

Purpose Initialization entry point in generated code for Simulink model

Syntax void model_initialize(void)
void model_initialize(boolean_T firstTime)

Arguments firstTime
Real-Time Workshop Embedded Coder generates this argument
for ERT-based Simulink models only if the IncludeERTFirstTime
model configuration parameter is set to on. Use of the firstTime
argument will be discontinued in a future release (see the note
below).

Specifies value 0 (FALSE) or 1 (TRUE). If firstTime equals 1,
model_initialize initializes rtModel and other data structures
private to the model. If firstTime equals 0, model_initialize
resets the model’s states, but does not initialize other data
structures. Call model_initialize with firstTime set to 0 to
reset the model’s states at a time greater than start time.

Description The model_initialize function contains all model initialization code.
The generated code for a Simulink model calls model_initialize once,
at the beginning of model execution.

If the IncludeERTFirstTime model configuration parameter is set to
on, the generated code passes in firstTime as 1 (TRUE).

Note In a future release, Real-Time Workshop Embedded Coder
will no longer use the firstTime argument in a model’s generated
model_initialize function. For more information about the
IncludeERTFirstTime model configuration parameter and a related
target configuration parameter, ERTFirstTimeCompliant, see
“Configuration Parameter Reference” in the Real-Time Workshop
documentation.

2-2

model_initialize

See Also model_SetEventsForThisBaseStep, model_step, model_terminate

“Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation

2-3

model_SetEventsForThisBaseStep

Purpose Set event flags for multirate, multitasking operation before calling
model_step for Simulink model

Syntax void model_SetEventsForThisBaseStep(boolean_T *eventFlags)
void model_SetEventsForThisBaseStep(boolean_T *eventFlags,
RT_MODEL_model *model_M)

Arguments eventFlags
Pointer to the model’s event flags array.

model_M
Pointer to the real-time model object. Real-Time Workshop
Embedded Coder generates this argument only if Generate
reusable code is on.

Description Real-Time Workshop Embedded Coder generates the
model_SetEventsForThisBaseStep utility function only for multirate,
multitasking models.

The model_SetEventsForThisBaseStep function maintains model event
flags that determine which subrate tasks need to run on a given base
rate time step. In a multirate, multitasking application, the program
code must call model_SetEventsForThisBaseStep before calling the
model_step function. See “Multirate Multitasking Operation” in the
Real-Time Workshop Embedded Coder documentation for further
information.

Note The macro MODEL_SETEVENTS, defined in the static ert_main.c
module, provides a way to call model_SetEventsForThisBaseStep from
a static main program.

See Also model_initialize, model_step, model_terminate

“Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation

2-4

model_step

Purpose Step routine entry point in generated code for Simulink model

Syntax void model_step(void)
void model_step(int_T tid)
void model_stepN (void)

Arguments tid
Task identifier. Real-Time Workshop Embedded Coder generates
this argument only for multirate, single-tasking models.

Calling
Interfaces

The model_step default function prototype varies depending on the
number of rates in the model and the solver mode, as shown below:

Rates/Solver Mode Function Prototype

Single-rate/SingleTasking void model_step(void);

Multirate/SingleTasking void model_step(int_T tid);

Multirate/MultiTasking
(rate grouping)

void model_stepN (void);
(N is a task identifier)

If you generate reusable, reentrant code for an ERT-based model
using the Generate reusable code option, the generated code passes
the model’s root-level inputs and outputs, block states, parameters,
and external outputs to model_step using a function prototype that
generally resembles the following:

void model_step(inport_args, outport_args, BlockIO_arg,

DWork_arg, RT_model_arg);

The manner in which the inport and outport arguments are passed is
determined by the setting of the Pass root-level I/O as parameter,
which appears on the Interface pane of the Configuration Parameters
dialog box or Model Explorer only if Generate reusable code is
selected.

2-5

model_step

Description Real-Time Workshop Embedded Coder generates the model_step
function for a Simulink model when the Single output/update
function configuration option is selected (the default) in the
Configuration Parameters dialog box or Model Explorer. model_step
contains the output and update code for all blocks in the model.

model_step is designed to be called at interrupt level from rt_OneStep,
which is assumed to be invoked as a timer ISR. rt_OneStep calls
model_step to execute processing for one clock period of the model.
See “rt_OneStep” in the Real-Time Workshop Embedded Coder
documentation for a description of how calls to model_step are
generated and scheduled.

Note If the Single output/update function configuration option
is not selected, Real-Time Workshop Embedded Coder generates the
following model entry point functions in place of model_step:

• model_output: Contains the output code for all blocks in the model

• model_update: Contain the update code for all blocks in the model

The model_step function computes the current value of all blocks. If
logging is enabled, model_step updates logging variables. If the model’s
stop time is finite, model_step signals the end of execution when the
current time equals the stop time.

In cases where a tid is passed in, the caller (rt_OneStep) assigns each
task a tid, and model_step uses the tid argument to determine which
blocks have a sample hit (and, therefore, should execute).

Under any of the following conditions, model_step does not check the
current time against the stop time:

• The model’s stop time is set to inf.

• Logging is disabled.

2-6

model_step

• The Terminate function required option is not selected.

Therefore, if any of these conditions are true, the program runs
indefinitely.

See Also model_initialize, model_SetEventsForThisBaseStep,
model_terminate

“Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation

2-7

model_terminate

Purpose Termination entry point in generated code for Simulink model

Syntax void model_terminate(void)

Description Real-Time Workshop Embedded Coder generates the model_terminate
function for a Simulink model when the Terminate function required
configuration option is selected (the default) in the Configuration
Parameters dialog box or Model Explorer. model_terminate contains
all model termination code and should be called as part of system
shutdown.

When model_terminate is called, blocks that have a terminate function
execute their terminate code. If logging is enabled, model_terminate
ends data logging.

The model_terminate function should be called only once.

If your application runs indefinitely, you do not need the
model_terminate function. To suppress the function, clear the
Terminate function required configuration option in the
Configuration Parameters dialog box or Model Explorer.

See Also model_initialize, model_SetEventsForThisBaseStep, model_step

“Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation

2-8

slConfigUIGetVal

Purpose Return current value for custom target configuration option

Syntax value = slConfigUIGetVal(hDlg, hSrc, 'OptionName')

Arguments hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

Returns Current value of the specified option. The data type of the return value
depends on the data type of the option.

Description The slConfigUIGetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
is selected in the System Target File Browser in the Configuration
Parameters dialog box or Model Explorer. You use slConfigUIGetVal
to read the current value of a specified target option.

Examples In the following example, the slConfigUIGetVal function returns the
value of the Terminate function required option on the Real-Time
Workshop/Interface pane of the Configuration Parameters dialog box
or Model Explorer.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

2-9

slConfigUIGetVal

disp(['Value of IncludeMdlTerminateFcn was ', ...

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUISetEnabled, slConfigUISetVal

“Defining and Displaying Custom Target Options” in the Real-Time
Workshop Embedded Coder documentation

“Configuration Parameter Reference” in the Real-Time Workshop
documentation

2-10

slConfigUISetEnabled

Purpose Enable or disable custom target configuration option

Syntax slConfigUISetEnabled(hDlg, hSrc, 'OptionName', true)
slConfigUISetEnabled(hDlg, hSrc, 'OptionName', false)

Arguments hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

true
Specifies that the option should be enabled.

false
Specifies that the option should be disabled.

Description The slConfigUISetEnabled function is used in the context of a
user-written SelectCallback function, which is triggered when the
custom target is selected in the System Target File Browser in the
Configuration Parameters dialog box or Model Explorer. You use
slConfigUISetEnabled to enable or disable a specified target option.

Examples In the following example, the slConfigUISetEnabled function
disables the Terminate function required option on the Real-Time
Workshop/Interface pane of the Configuration Parameters dialog box
or Model Explorer.

function usertarget_selectcallback(hDlg, hSrc)

2-11

slConfigUISetEnabled

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', ...

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal, slConfigUISetVal

“Defining and Displaying Custom Target Options” in the Real-Time
Workshop Embedded Coder documentation

“Configuration Parameter Reference” in the Real-Time Workshop
documentation

2-12

slConfigUISetVal

Purpose Set value for custom target configuration option

Syntax slConfigUISetVal(hDlg, hSrc, 'OptionName', OptionValue)

Arguments hDlg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for any other purpose.

'OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

OptionValue
Value to be set for the specified option.

Description The slConfigUISetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
is selected in the System Target File Browser in the Configuration
Parameters dialog box or Model Explorer. You use slConfigUISetVal
to set the value of a specified target option.

Examples In the following example, the slConfigUISetVal function sets the value
'off' for the Terminate function required option on the Real-Time
Workshop/Interface pane of the Configuration Parameters dialog box
or Model Explorer.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...

' Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', ...

2-13

slConfigUISetVal

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal, slConfigUISetEnabled

“Defining and Displaying Custom Target Options” in the Real-Time
Workshop Embedded Coder documentation

“Configuration Parameter Reference” in the Real-Time Workshop
documentation

2-14

3

Blocks — By Category

Configuration Wizards (p. 3-2) Automatically update configuration
of parent Simulink model

Module Packaging (p. 3-3) Create potential Simulink data
objects

3 Blocks — By Category

Configuration Wizards

Custom M-file Automatically update active
configuration parameters of parent
model using custom M-file

ERT (optimized for fixed-point) Automatically update active
configuration parameters of parent
model for ERT fixed-point code
generation

ERT (optimized for floating-point) Automatically update active
configuration parameters of parent
model for ERT floating-point code
generation

GRT (debug for fixed/floating-point) Automatically update active
configuration parameters of
parent model for GRT fixed- or
floating-point code generation with
debugging enabled

GRT (optimized for
fixed/floating-point)

Automatically update active
configuration parameters of parent
model for GRT fixed- or floating-point
code generation

3-2

Module Packaging

Module Packaging

Data Object Wizard Simulink data object wizard for
creating potential Simulink data
objects

3-3

3 Blocks — By Category

3-4

4

Blocks — Alphabetical List

Custom M-file

Purpose Automatically update active configuration parameters of parent model
using custom M-file

Library Configuration Wizards

Description When you add a Custom M-file block to your Simulink model and
double-click it, a custom M-file script executes and automatically
configures model parameters that are relevant to code generation. You
can also set a block option to invoke the build process after configuring
the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box or Model Explorer and examining the settings.

The MathWorks provides an example M-file script,
matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m, that you
can use with the Custom M-file block and adapt to your model
requirements. The block and the script provide a starting point
for customization. For more information, see “Creating a Custom
Configuration Wizard Block” in the Real-Time Workshop Embedded
Coder documentation.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

4-2

Custom M-file

For this block, Custom is selected by default.

Configuration function
Name of the predefined or custom M-file script to be used to
update the active configuration parameters of the parent Simulink
model. The default value is rtwsampleconfig, which refers to the
example M-file script rtwsampleconfig.m.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also ERT (optimized for fixed-point), ERT (optimized for floating-point), GRT
(debug for fixed/floating-point), GRT (optimized for fixed/floating-point)

“Optimizing Your Model with Configuration Wizard Blocks and Scripts”
in the Real-Time Workshop Embedded Coder documentation

4-3

Data Object Wizard

Purpose Simulink data object wizard for creating potential Simulink data objects

Library Module Packaging

Description When you add a Data Object Wizard block to your Simulink model and
double-click it, the Data Object Wizard is launched:

4-4

Data Object Wizard

The Data Object Wizard allows you to determine quickly which model
data is not associated with Simulink data objects and to create and
associate data objects with the data.

For detailed information about using the Data Object Wizard, see
“Data Object Wizard” in the Simulink documentation and “Creating
Data Objects with Data Object Wizard” in the Real-Time Workshop
Embedded Coder documentation.

You can also launch the Data Object Wizard by entering
dataobjectwizard at the MATLAB® command line or by selecting
Data Object Wizard from the Tools menu of your model.

Example For an example of a model that incorporates the Data Object Wizard
block, see rtwdemo_mpf.

See Also “Data Object Wizard” in the Simulink documentation

“Creating Data Objects with Data Object Wizard” in the Real-Time
Workshop Embedded Coder documentation

“Creating a Data Dictionary for a Model” in the Real-Time Workshop
Embedded Coder documentation

“Customizing Data Object Wizard User Packages” in the Real-Time
Workshop Embedded Coder documentation

4-5

ERT (optimized for fixed-point)

Purpose Automatically update active configuration parameters of parent model
for ERT fixed-point code generation

Library Configuration Wizards

Description When you add an ERT (optimized for fixed-point) block to your Simulink
model and double-click it, a predefined M-file script executes and
automatically configures the model parameters optimally for fixed-point
code generation with the ERT target. You can also set a block option to
invoke the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box or Model Explorer and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, ERT (optimized for fixed-point) is selected
by default.

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom M-file block.

4-6

ERT (optimized for fixed-point)

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom M-file, ERT (optimized for floating-point), GRT (debug for
fixed/floating-point), GRT (optimized for fixed/floating-point)

“Optimizing Your Model with Configuration Wizard Blocks and Scripts”
in the Real-Time Workshop Embedded Coder documentation

4-7

ERT (optimized for floating-point)

Purpose Automatically update active configuration parameters of parent model
for ERT floating-point code generation

Library Configuration Wizards

Description When you add an ERT (optimized for floating-point) block to your
Simulink model and double-click it, a predefined M-file script executes
and automatically configures the model parameters optimally for
floating-point code generation with the ERT target. You can also set a
block option to invoke the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box or Model Explorer and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, ERT (optimized for floating-point) is selected
by default.

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom M-file block.

4-8

ERT (optimized for floating-point)

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom M-file, ERT (optimized for fixed-point), GRT (debug for
fixed/floating-point), GRT (optimized for fixed/floating-point)

“Optimizing Your Model with Configuration Wizard Blocks and Scripts”
in the Real-Time Workshop Embedded Coder documentation

4-9

GRT (debug for fixed/floating-point)

Purpose Automatically update active configuration parameters of parent model
for GRT fixed- or floating-point code generation with debugging enabled

Library Configuration Wizards

Description When you add a GRT (debug for fixed/floating-point) block to your
Simulink model and double-click it, a predefined M-file script executes
and automatically configures the model parameters optimally for
fixed/floating-point code generation, with TLC debugging options
enabled, with the GRT target. You can also set a block option to invoke
the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box or Model Explorer and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, GRT (debug for fixed/floating-point) is
selected by default.

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom M-file block.

4-10

GRT (debug for fixed/floating-point)

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom M-file, ERT (optimized for fixed-point), ERT (optimized for
floating-point), GRT (optimized for fixed/floating-point)

“Optimizing Your Model with Configuration Wizard Blocks and Scripts”
in the Real-Time Workshop Embedded Coder documentation

4-11

GRT (optimized for fixed/floating-point)

Purpose Automatically update active configuration parameters of parent model
for GRT fixed- or floating-point code generation

Library Configuration Wizards

Description When you add a GRT (optimized for fixed/floating-point) block to your
Simulink model and double-click it, a predefined M-file script executes
and automatically configures the model parameters optimally for
fixed/floating-point code generation with the GRT target. You can also
set a block option to invoke the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box or Model Explorer and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, GRT (optimized for fixed/floating-point) is
selected by default.

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom M-file block.

4-12

GRT (optimized for fixed/floating-point)

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom M-file, ERT (optimized for fixed-point), ERT (optimized for
floating-point), GRT (debug for fixed/floating-point)

“Optimizing Your Model with Configuration Wizard Blocks and Scripts”
in the Real-Time Workshop Embedded Coder documentation

4-13

Index

IndexB
blocks

Custom M-file 4-2
Data Object Wizard 4-4
ERT (optimized for fixed-point) 4-6
ERT (optimized for floating-point) 4-8
GRT (debug for fixed/floating-point) 4-10
GRT (optimized for

fixed/floating-point) 4-12

C
Custom M-file block 4-2

D
Data Object Wizard block 4-4

E
ERT (optimized for fixed-point) block 4-6
ERT (optimized for floating-point) block 4-8

G
GRT (debug for fixed/floating-point) block 4-10

GRT (optimized for fixed/floating-point)
block 4-12

M
model entry points

model_initialize 2-2
model_SetEventsForThisBaseStep 2-4
model_step 2-5
model_terminate 2-8

model_initialize function 2-2
model_output function 2-6
model_SetEventsForThisBaseStep

function 2-4
model_step function 2-5
model_terminate function 2-8
model_update function 2-6

S
slConfigUIGetVal function 2-9
slConfigUISetEnabled function 2-11
slConfigUISetVal function 2-13

Index-1

	toc
	Functions — By Category
	Model Entry Points
	System Target File Callback Interface

	Functions — Alphabetical List
	Blocks — By Category
	Configuration Wizards
	Module Packaging

	Blocks — Alphabetical List
	Index

